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Abstract

We developed FunctionFold, a novel approach for generating functional proteins1

using natural language input through a classifier-guided diffusion model. Our2

architecture combines CLIPPro, our custom alignment model that scores how3

well protein sequences match text descriptions, with the Diffusion Protein Lan-4

guage Model (DPLM) for sequence generation. Unlike existing models that focus5

primarily on protein embeddings or structural information, we investigated the6

impact of different natural language encoders (PubMedBERT and Mixedbread)7

on functional protein generation. Our guided approach outperformed unguided8

baselines across multiple evaluation metrics, achieving higher functional alignment9

(0.2088 vs 0.2040 Levenshtein similarity) and ProTrek scores (2.30 vs 1.98) while10

maintaining competitive structural quality with mean pLDDT of 73.90 compared11

to EvoDiff’s 75.11. These results demonstrate that appropriate semantic guidance12

from natural language significantly enhances protein design without compromising13

structural plausibility, opening new avenues for function-driven protein engineer-14

ing.15

1 Introduction16

In recent years, protein engineering has emerged as a tremendous asset in the field of biotechnology,17

drug development, and understanding of rare diseases. Though previously relying on labor-intensive18

wet lab experimentation to generate such critical sequences, the rise of AI has ushered in a new era19

where computers can both streamline protein generation while also enhancing target outcomes for20

various downstream tasks [1]. Most models are specific to understanding a specific attribute of a21

sequence, such as overall hydrophobicity or residue-level disorder, and tuning parameters to capture22

relative motifs [2]; however, the most critical aspect of a protein in real life is its function. Thus,23

more recent efforts have been working toward developing methods that relate overall protein function24

to sequence.25

The most effective current models are driven by natural language inputs, which are capable of26

capturing nuance and complexity to promote the specificity of the generated protein, accelerate the27

generative pipeline, and enhance contributions to biotechnology and medicine [1]. Despite this, some28

current models rely on keywords ([3]) or are only capable of refining current protein language models29

(pLMs) ([4]), both which fail to take full advantage of the functional nuance captured by natural30
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language. Models that incorporate a natural language to sequence pipeline may require high amounts31

of processing power by focusing on structure, text input, and sequence information ([5], [6], [7])32

or are highly specific to a particular type of protein or training data ([8]). Notably, none of these33

models explored the impacts of differing natural language embeddings, rather, they explored what34

supplemental information (ex. structure, protein embedding) could improve.35

Here, we aim to construct a model capable of generating sequences based on natural language input36

and investigate the effects of understanding language through different natural language encoders. We37

opted for classifier-guidance conditioning of sequence generation using DPLM, but instead of using a38

classifier that predicts the function or class of given sequence, we built our own model that "scores"39

how well a free form text of function description aligns with a given protein sequence (ClipPro). Thus40

we guided the diffusion steps so that it generates sequences conditioned on the given text prompt. For41

ClipPro, we tested two different text embeddings (PubMedBERT and Mixedbread) instead of focusing42

on protein embeddings as in previous literature. We intuited that extracting meaningful information43

from text would prove more efficient and valuable than attempting to incorporate structural or44

other information. We discover that our classifier-guided approach generates proteins with improved45

functional relevance and maintained structural quality compared to unguided baselines, demonstrating46

the effectiveness of leveraging natural language understanding for protein engineering applications.47

2 Related Works48

Recent advances in protein language models have significantly transformed the landscape of compu-49

tational protein design. CLIP-based models for protein-text alignment have shown promising results50

in cross-modal representation learning. ProteinCLIP established a foundation for aligning protein51

sequences with natural language descriptions through contrastive learning, enabling sequence re-52

trieval based on functional descriptions [4]. However, these approaches primarily focus on improving53

protein embeddings rather than leveraging the quality of text understanding to enhance generation54

capabilities.55

BioM3, a large language model trained on protein sequences, demonstrated impressive capabilities56

in functional property prediction but lacks natural language conditioning capabilities for targeted57

generation [9]. Pinal employed a multimodal framework connecting protein and text representations58

but required substantial computational resources for structure incorporation alongside sequence59

modeling [5]. ProteinDT and Chroma similarly integrate structural information with sequence60

data, but at significant computational cost without exploring the impact of different text embedding61

approaches on generation quality ([6], [7]). More recently, EvoDiff opened up the realm of sequence62

generation from natural language input yet implemented a continuous diffusion model rather than a63

discrete diffusion model architecture [10].64

Recent advances in diffusion approaches provide a powerful framework for protein sequence genera-65

tion. Leveraging latent diffusion has been utilized [11] – DiMA demonstrated that latent diffusion66

on protein language model embeddings can generate high-quality, diverse sequences while enabling67

conditional tasks like family generation and inpainting. The Diffusion Protein Language Model68

(DPLM) demonstrated that discrete diffusion processes can effectively model the complex distribution69

of protein sequences [12]. However, previous work has not thoroughly explored how to effectively70

guide these models using natural language descriptions of protein function through specialized text71

encoders.72

Our work bridges this gap by investigating how different text encoders affect classifier-guided73

protein generation using discrete diffusion. By focusing on improving text understanding rather than74

incorporating additional structural information, our approach offers a more computationally efficient75

path to function-driven protein design. This framing matters because natural language remains76

the primary medium through which biological function is described, and improving the semantic77

alignment between text and protein representations enables more precise control over generated78

sequences.79
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Figure 1: CLIPPro architecutre and training regime

Figure 2: Pipeline of CLIPPro-guided DPLM sequence generation and evalaution
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Figure 3: UMAP projection of protein and text embeddings generated by CLIPPro. The overlapping
regions indicate alignment in the shared embedding space, demonstrating effective contrastive
training.

3 Methods80

3.1 Dataset81

We used the dataset originally used to train ProteinCLIP, sourced from the manually reviewed82

SwissProt section of the UniProt database.[4] The dataset provides high-quality, expert-curated83

annotations that offer reliable and biologically meaningful protein descriptions, aligning well with84

our goal of training a scoring function that links protein sequences with text descriptions. Since85

ProteinCLIP follows a similar multimodal setup, using its training dataset ensures consistency and86

compatibility for guiding conditional sequence generation with DPLM (Diffusion Protein Language87

Model).[12]88

The dataset contains 465,770 protein sequences spanning 14,514 different organisms, with annotations89

curated by UniProtKB experts. Alongside sequence data, we extracted functional and biological90

annotation texts that describe each protein’s function, associated diseases, family relationships based91

on sequence or structural similarities, organism species, gene name, and evidence level (i.e. protein92

existence). Proteins occurring in multiple organisms were treated as distinct pairs, as their amino93

acid sequences differed despite having similar functional descriptions.94

To ensure high-quality protein sequence and text data, we normalized and cleaned whitespace, and95

filtered out entries with empty sequences or descriptions, as these lacked meaningful information96

for downstream analysis. We also removed sequences containing non-standard amino acids—any97

characters outside the 20 canonical amino acids. Finally, to avoid biologically irrelevant or incomplete98

entries, we excluded sequences shorter than 30 amino acids.99

To prevent data leakage and ensure meaningful evaluation, we applied homology-aware clustering100

approach to the protein dataset using MMseqs2. By grouping similar protein sequences based on101

sequence identity and coverage, the algorithm assigned entire clusters exclusively to either the training102

or test set. As a result, closely related sequences were kept separate across data splits, avoiding103

inflated performance due to shared structural or functional features.104

After clustering, we mapped cluster labels back to the annotated protein records and performed105

an 80/20 stratified split at the cluster level. To reduce redundancy, one representative protein was106

selected per cluster, capturing a diverse yet non-overlapping subset of the full dataset. From the107
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representative set, we sampled 100,000 proteins (10M) and divided them into final training and108

test splits. The overall preprocessing and splitting strategy ensured that the scoring model learns109

generalizable relationships between sequences and text annotations, rather than relying on memorized110

similarities among homologous proteins.111

3.2 Embeddings112

To enable multimodal learning between protein sequences and their associated text annotations, we113

first constructed a paired dataset linking each protein to a descriptive text. Text fields such as function,114

disease relevance, family, organism, gene name, and evidence level were concatenated into a single115

"Text" column to summarize key biological information. The resulting training and test datasets116

provided a consistent input format for aligning sequence and text representations.117

Protein sequences were embedded using the ESM-2 model (650M), a large-scale transformer trained118

on a masked language modeling objective using protein sequences from UniRef50. [13] Each119

sequence was tokenized, passed through the model, and converted into a fixed-length vector repre-120

sentation by applying mean pooling over the final hidden layer. Embeddings were stored in pickle121

format to support efficient retrieval during training and evaluation.122

Text annotations were embedded using two complementary biomedical language models selected for123

their distinct advantages. The first, PubMedBERT, was pre-trained on PubMed abstracts and full-text124

biomedical literature, making it well-suited for capturing the nuanced semantics found in protein125

function, disease relevance, and molecular biology contexts. [14] PubMedBERT effectively models126

domain-specific terminology that appears in curated protein annotations.127

The second model, Mixedbread, is a sentence transformer optimized for generating high-quality128

semantic representations across a wide range of natural language inputs.[15] Mixedbread brings129

strong generalization capabilities, allowing it to encode functional descriptions with greater semantic130

coherence and flexibility, particularly when dealing with free-text biological annotations.131

Text inputs were tokenized, encoded in batches, and stored as dictionaries that map UniProt IDs to132

their respective embedding vectors. The paired protein and text embeddings enable the training of133

a scoring function designed to associate sequence-level representations with biologically grounded134

textual descriptions. This alignment plays a central role in supporting downstream tasks such as135

classifier-guided protein sequence generation using DPLM, where understanding both sequence and136

functional context is essential.137

3.3 Architecture138

Our model, ClipPro, learns to align protein sequences with biological text descriptions using a139

contrastive learning approach. The model takes in precomputed sequence and text embedding pairs:140

1280-dimensional protein embeddings from ESM-2 (650M) and text embeddings generated from141

either PubMedBERT (768 dimensions) or Mixedbread (1024 dimensions).142

Each embedding is passed through a modality-specific multilayer perceptron (MLP) that projects143

them into a shared latent space of dimension 1024. The MLP consists of two linear layers: the144

first expands the input to 3072 dimensions (i.e., 3× the shared hidden size) with a ReLU activation,145

followed by a second linear layer that reduces the output to 1024 dimensions, again with ReLU146

activation. Separate projection heads (MLP) are used for protein and text embeddings. The resulting147

vectors are L2-normalized before computing cosine similarity.148

ClipPro is trained using a symmetric InfoNCE loss that encourages matched protein-text pairs to149

align while penalizing mismatched pairs. The loss is computed in both directions—protein-to-text150

and text-to-protein—and scaled using a learnable temperature parameter initialized to 0.07. Only the151

projection MLPs are updated during training, while the pretrained ESM-2 and text encoders remain152

frozen.153

The trained ClipPro model is used as a frozen scoring function to guide conditional sequence154

generation in DPLM. A target text prompt is embedded using the selected text encoder and passed into155

ClipPro. During each diffusion step, the predicted sequence is embedded using ESM-2 and evaluated156

against the text embedding using ClipPro. The cosine similarity score is used to compute a gradient,157

which guides the next denoising step of DPLM. This guidance signal nudges the generation process158
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toward sequences that are more semantically aligned with the input prompt, enabling biologically159

meaningful conditional protein design.160

3.3.1 Training161

CLIPPro was trained for 10 epochs using paired protein embeddings and text embeddings. We selected162

Mixedbread for downstream use, as it consistently yielded a lower training loss than PubMedBERT.163

All experiments were conducted on an NVIDIA A100 GPU using PyTorch. We used a batch size164

of 64 and optimized the model using AdamW with a learning rate of 1e-4, which was chosen for165

its effectiveness in handling weight decay and promoting stable training. A learnable temperature166

parameter, initialized to 0.07, scaled the cosine similarity scores within the InfoNCE loss. No167

learning rate scheduler or early stopping was applied, as training showed stable convergence without168

overfitting.169

Training was supervised using a symmetric InfoNCE loss, computed in both directions (protein-to-170

text and text-to-protein). Cross-entropy loss was applied over cosine similarity logits, where each171

matching pair was treated as a positive example and all others in the batch were considered nega-172

tives. This bidirectional formulation promoted robust and consistent alignment between modalities.173

Regularization was implicitly handled through weight decay in the AdamW optimizer and the use of174

normalized outputs. The model demonstrated smooth convergence without signs of overfitting, as175

evidenced by consistent training and test loss reduction over epochs.176

To evaluate training performance, we used both quantitative and qualitative methods. Cosine simi-177

larity heatmaps revealed strong diagonal alignment between text and protein projections, indicating178

successful pairwise matching. Additionally, UMAP was applied to the projected embeddings to179

visualize their distribution in 2D. The resulting plots showed that protein and text embeddings over-180

lapped significantly, suggesting that the model effectively aligned the two modalities in the shared181

representation space.182

The final trained model was saved after 10 epochs and is ready to be used as a frozen classifier for183

guiding DPLM in conditional protein sequence generation.184

3.3.2 Evaluation Metrics185

To evaluate the quality of generated protein sequences, we incorporate both structural and sequence-186

level metrics that align with biological plausibility and prompt consistency. Structural validity is187

assessed using AlphaFold-derived metrics (using ColabFold) including pLDDT (predicted Local188

Distance Difference Test), pTM (predicted Template Modeling score), and pAE (predicted Alignment189

Error). pLDDT provides per-residue confidence values and serves as a proxy for local structural190

stability by quantifying local structural confidence on a scale of 0-100, where higher values indicate191

greater reliability of the predicted local structure. pTM captures global fold similarity based on the192

expected similarity between predicted and native structures after optimal superposition and pAE193

estimates residue-pair alignment uncertainty in angstroms between residue pairs in the predicted194

structure. Higher pLDDT and pTM scores and lower pAE values indicate higher structural fidelity in195

the predicted conformation of generated sequences.196

To assess how well generated sequences reflect the intended design prompt, we compute Levenshtein197

similarity using a sliding-window alignment against known UniProt sequences annotated with the198

target function. This metric captures edit-based proximity to natural analogs as a ratio from 0-1, with199

higher scores indicating stronger alignment to real proteins. Additionally, we report Shannon entropy200

(defined as H = �
P

p(x)log2p(x) where p(x) is the frequency of amino acid x at each position)201

as a measure of token-level diversity in the generated sequences. Higher entropy suggests greater202

compositional variability, which can reflect improved novelty or reduced mode collapse. Lastly, we203

use the ProTrek score, a function prediction confidence derived from a protein-text contrastive model,204

to quantify how well the generated sequence aligns with the intended biological function described by205

the prompt. Together, these metrics provide a multi-dimensional evaluation of structural correctness,206

prompt relevance, and generative diversity.207
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4 Experiments and Results208

4.1 Quantitative Evaluation209

We compare our classifier-guided generation model (Guided) against three baselines: an unguided210

version of the same model (Unguided), a model with random irrelevant guidance using arbitrary211

words (Random Guidance), and EvoDiff (?), a state-of-the-art unconditional protein generative212

model. As shown in Table 1, Guided generation achieved competitive structural quality with a mean213

pLDDT of 73.90 and pTM of 0.3923, closely matching EvoDiff (75.11 and 0.3694, respectively)214

and outperforming both the Unguided variant (72.70 and 0.3881) and Random Guidance (70.13215

and 0.3421) on structural metrics. Notably, our Guided approach achieved superior ProTrek scores216

(2.30) compared to the Unguided model (1.98), indicating better predicted functional properties and217

stability.218

The Random Guidance condition, which used arbitrary text prompts unrelated to protein function219

(e.g., "apple banana airplane"), performed significantly worse across all metrics except Shannon220

entropy. This condition exhibited the lowest pLDDT score (70.13), lowest pTM (0.3421), and poorest221

Levenshtein similarity (0.1011), while having a high entropy (3.2022) nearly matching EvoDiff’s222

unconstrained diversity. This demonstrates that guidance must be semantically meaningful to improve223

generation quality, and that arbitrary text prompts can actually degrade performance compared to224

both proper guidance and no guidance at all. Figure 4 illustrates that across most of the 16 functional225

prompts, our Guided model maintains a structural quality advantage over both the Unguided and226

Random Guidance variants.227

To assess prompt relevance, we compute Levenshtein similarity between generated sequences and228

ground-truth functional proteins retrieved from UniProt. Guided generation achieved the highest229

average similarity (0.2088), outperforming both Unguided (0.2040) and Random Guidance (0.1011),230

demonstrating the effectiveness of classifier guidance in steering generation toward functionally231

relevant sequence space. The dramatically lower similarity score for Random Guidance (0.1011)232

highlights that inappropriate guidance actively pushes the model away from functional regions of the233

protein manifold. The pAE (predicted aligned error) scores further illustrate this pattern, with Random234

Guidance showing a markedly low score of 3.1201 compared to Guided (12.61), EvoDiff (12.45),235

and Unguided (11.76). These metrics collectively demonstrate that classifier guidance successfully236

improves functional alignment without compromising structural plausibility, while inappropriate237

guidance significantly impairs both.238

We additionally evaluate Shannon entropy as a measure of compositional diversity across the amino239

acid distributions in generated sequences. EvoDiff achieved the highest entropy (3.3009), with240

Random Guidance following closely (3.2022), reflecting unconstrained generation processes that241

produce diverse but functionally unaligned sequences. In contrast, purposefully Guided and Unguided242

generations had more focused entropy values (2.6824 and 2.6619 respectively), consistent with their243

task-constrained sampling strategies. The significantly higher entropy of Random Guidance compared244

to proper Guided generation suggests that semantically irrelevant guidance causes the model to explore245

wider but less functionally relevant regions of sequence space.246

Table 1: Structural and Sequence Metrics for Classifier Guided, Unguided, and EvoDiff Protein
Sequence Generations

Condition Mean pLDDT Mean pTM Mean pAE Shannon Entropy Levenshtein Similarity

Guided 73.90 0.3923 12.61 2.6824 0.2088
Random Guidance 70.13 0.3421 3.1201 3.2022 0.1011
Unguided 72.70 0.3881 11.76 2.6619 0.2040
EvoDiff 75.11 0.3694 12.45 3.3009 –

4.2 Ablation and Diversity247

We conduct comprehensive ablations on the classifier guidance weight � to study its effect on248

generation quality and functional alignment. As shown in Table 1, lowering � toward 0 reduces249

functional alignment as evidenced by declining Levenshtein similarity and ProTrek scores, while a250

high � maximizes prompt adherence but introduces a minor penalty to structural confidence (pLDDT251
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Figure 4: Mean pLDDT scores across 16 different protein functional prompts for three generation
methods. The plot demonstrates that our classifier-guided model (blue) achieves marginally better
structural quality than the unguided variant (pink) for most prompts, while maintaining comparable
performance to the state-of-the-art EvoDiff model (green). All approaches consistently produce
structures above the reliability threshold, with the guided generation achieving this more frequently
than unguided generation.

Figure 5: Predicted 3D structures and AlphaFold-derived pAE heatmaps for sequences generated by
the classifier-guided model. A. Protein designed to be algogenic for animals, humans, and insects
exhibits a largely disordered structure with localized helical content. B. A protein with the prompt
penetrates eukaryotic cell membranes to deliver molecular cargo shows multi-helical organization
and moderate structural confidence. C. The prompt binds single-stranded DNA during recombination
yields a complex fold with several well-ordered alpha helices. Heatmaps below each structure indicate
the pairwise predicted alignment error (pAE), with darker shading representing higher uncertainty.

and pTM). The Random Guidance condition effectively demonstrates an extreme case where guidance252

actively harms generation quality, producing results even worse than completely unguided generation.253

Through extensive experimentation across all 16 prompts, we find that a moderately high setting of254

(� = 0.8) with semantically relevant guidance optimally balances these trade-offs and provides the255

best overall performance.256

For diversity analysis, we compute both sequence-level metrics (Shannon entropy) and structure-level257

assessments via ProTrek scores. EvoDiff and Random Guidance exhibit the highest entropy values258

(3.3009 and 3.2022 respectively) and sample-to-sample variability, consistent with their unconstrained259

or misdirected sampling strategies. However, this unrestricted exploration comes at the significant260

cost of functional irrelevance and reduced structural quality. The properly Guided model, despite261

lower overall entropy (2.6824 versus Unguided’s 2.6619), preserves meaningful diversity within262

functionally constrained regions of sequence space.263

4.3 Interpretation264

These results provide strong empirical support for our hypothesis that classifier guidance can effec-265

tively steer protein generation toward functional targets while maintaining structural plausibility—but266

only when the guidance is semantically relevant to protein function. The improved Levenshtein267

similarity in the Guided model (0.2088 versus 0.2040 for Unguided and 0.1011 for Random Guid-268
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ance) and significantly higher ProTrek scores (2.30 versus 1.98 for Unguided) demonstrate that269

conditioning via meaningful text embeddings influences the output distribution toward functionally270

relevant regions of sequence space. Conversely, the poor performance of Random Guidance across271

all functional metrics highlights the importance of using appropriate conditioning signals.272

The observed trade-off between entropy and prompt adherence reveals a controllable diversity mech-273

anism: while EvoDiff produces broader sequence distributions across the entire protein manifold,274

and Random Guidance generates high-entropy but functionally compromised sequences, our guided275

approach offers biologically meaningful, prompt-specific diversity focused within functionally rele-276

vant subspaces. This targeted diversity is particularly valuable for protein engineering applications,277

where exploration within a functionally constrained region is more useful than unconstrained or mis-278

directed sampling. The 16% improvement in ProTrek scores for Guided versus Unguided generation279

underscores the practical utility of our approach for designing proteins with improved functional280

properties.281

As shown in Figure 5, our classifier-guided model successfully generates diverse structures that282

match their intended functions. For example, the algogenic protein (Figure 5A) exhibits a partially283

disordered structure appropriate for its functional role, while the membrane-penetrating protein284

(Figure 5B) shows a multi-helical organization suited for membrane interaction. The DNA-binding285

protein (Figure 5C) displays a complex folding pattern with well-ordered alpha helices characteristic286

of nucleic acid binding domains. The corresponding pAE heatmaps indicate reasonable confidence287

in the predicted structures, with regions of higher uncertainty primarily in the flexible or disordered288

segments. These qualitative results further validate that our guided approach can produce functionally289

diverse proteins with appropriate structural characteristics.290

5 Conclusion291

Our classifier-guided protein generation approach successfully balances functional relevance with292

structural plausibility, outperforming unguided baselines across key metrics. FunctionFold achieved293

higher Levenshtein similarity (0.2088 vs. 0.2040) and ProTrek scores (2.30 vs. 1.98) compared to the294

unguided approach while maintaining competitive structural quality metrics. These improvements295

demonstrate that semantically relevant guidance steers the generative process toward functionally296

appropriate regions of sequence space without compromising structural integrity. Notably, our297

experiments with random guidance showed that inappropriate conditioning signals can actively harm298

generation quality, highlighting the importance of meaningful semantic alignment between text299

descriptions and protein sequences.300

Despite these promising results, our work has several limitations. First, the current implementation301

focuses on relatively short protein sequences and faces computational overhead when generating302

embeddings for each sequence candidate during the diffusion process, making it prohibitive for303

high-throughput applications or scaling to longer proteins. Second, our approach does not directly304

incorporate evolutionary information or structural constraints that could further improve the biological305

relevance of generated sequences as is done in EvoDiff. Additionally, the fidelity of functional306

alignment remains limited by the quality of the initial training dataset and the expressiveness of307

the embedding models. Finally, while we demonstrate functional relevance through ProTrek scores308

and Levenshtein similarity, our work lacks experimental validation of the generated proteins’ actual309

biological activity. There remains a significant gap between computational prediction and wet-lab310

confirmation of function that future work should address. Future work should explore scaling311

to longer sequences, alternative contrastive loss functions for improved alignment, and hybrid312

approaches that combine language-guided generation with evolutionary constraints based on textual313

input. Incorporating recent advances in masked language modeling could also enhance the precision314

and diversity of generated sequences while maintaining functional specificity.315
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